MCS-208
SOLVED
ASSIGNMENT 2024-25

There are four questions in this assignment, which carry 80 marks. Each question
carries 20 marks. Rest 20 marks are for viva voce. All algorithms should be written
nearer to C programming language. You may use illustrations and diagrams to enhance
the explanations, if necessary. Please go through the guidelines regarding assignments
given in the Programme Guide for the format of presentation.

Question 1: (20 Marks)

What is a Doubly Linked Circular List? What are its advantages and disadvantages?
Give a scenario where its application is appropriate. Justify your answer.

Ans. Doubly Linked Circular List:

A Doubly Linked Circular List is a data structure that combines the features of doubly linked
lists and circular lists. It consists of nodes where each node contains a reference to its
previous and next node, and the list itself forms a circle. This means that the last node in the
list points back to the first node, and the first node's previous reference points back to the last
node.

Structure:

1. Nodes: Each node in the list has three components:
- Data: Stores the value or data.
- Next: A pointer/reference to the next node in the list.

- Previous: A pointer/reference to the previous node in the list.

2. Circularity: The list’s circular nature is achieved by setting the ‘next” pointer of the last
node to the first node, and the “previous’ pointer of the first node to the last node.

Advantages:

1. Bidirectional Traversal: Unlike a singly linked list, a doubly linked circular list allows
traversal in both directions (forward and backward). This is useful for algorithms that need to
traverse the list from either end.

2. Circular Structure: The circular nature eliminates the need to check for the end of the list
during traversal, as you can loop indefinitely. This is particularly useful in applications
requiring continuous cycling through elements.

Page 1 of 15

3. Efficient Insertion and Deletion: Inserting or deleting a node at any position can be done
efficiently without having to traverse the list, as pointers can be adjusted in constant time, \(
O(1)\), given that the node's location is known.

4. Space Efficiency: There is no need for a null reference to mark the end of the list, which
can be advantageous in memory-constrained environments.

Disadvantages:

1. Complexity: The implementation of doubly linked circular lists is more complex than
singly linked lists due to the management of additional pointers (‘next" and “previous’). This
can lead to higher potential for bugs if not handled correctly.

2. Memory Overhead: Each node requires extra memory for storing the ‘previous’ pointer in
addition to the ‘next’ pointer. This can be a disadvantage in memory-sensitive applications.

3. Potential for Infinite Loops: Due to the circular nature, improper handling of list traversal
can lead to infinite loops if the traversal logic is not carefully implemented.

4. Maintenance of Circular References: Ensuring the circular references (i.e., linking the last
node to the first and vice versa) is crucial. Any error in setting these pointers can result in
broken links and potential loss of data.

Appropriate Scenario for Application:

A doubly linked circular list is particularly appropriate in scenarios where cyclic data
processing is required. One classic example is the implementation of a Round-Robin
Scheduling Algorithm used in operating systems.

Round-Robin Scheduling:

Scenario:

Page 2 of 15

In a round-robin scheduling system, tasks or processes are assigned CPU time in a circular
order. The operating system scheduler needs to cycle through a list of processes, assigning
them time slots in a repetitive manner. This ensures that all processes receive an equal share
of the CPU time, which is crucial for maintaining fairness and responsiveness in a multi-
tasking environment.

Justification:

1. Circular Traversal: The circular nature of the list perfectly matches the requirement of
round-robin scheduling. Once the scheduler reaches the end of the list, it can directly jump
back to the start without any additional checks or adjustments.

2. Bidirectional Access: Although round-robin scheduling primarily requires forward
traversal, having bidirectional access can be useful in scenarios where backward traversal
might be needed for error recovery or other management tasks.

3. Efficient Task Management: The doubly linked nature allows for efficient insertion and
deletion of tasks, which is advantageous when processes are added or removed dynamically.
For instance, if a new task arrives or a task completes, the list can be updated quickly without
extensive traversals.

4. Continuous Cycling: The list’s circular property ensures that the scheduler can
continuously cycle through tasks without the need to handle end-of-list conditions explicitly,
simplifying the implementation of the scheduling algorithm.

Implementation Example:

Here is a simplified illustration of how a doubly linked circular list might be used in a round-
robin scheduler:

Page 3 of 15

python (P Copy code

(self, process id):
self.process_id = process_id
saelf.next =

self.previous =

(self):
self.head =

(self, process_id):
new_node = Node(process_id)
self.head
self.head = new_node
self.head.r = self.head

self.head.previous = self.head

(3 Copy code

tail = self.head.previous
tail.next = new_node

new_node.previous = tail
new_node.next = self.head

self.head.previous = new_node

(self, process_id):

current = self.head

current.process_id == process_id:
current.previous.next = current.n
current.next.previous = current.previous
- current == self.head:

self.head = current.n

Page 4 of 15

(Copy code
current = current.next

current == self.head:

(self):

current = self.head

print(

current = current.next

current == self.head:

In this example:

- "add process’ method adds processes to the list, maintaining the circular and doubly linked
properties.

- ‘remove_process’ method efficiently removes processes, adjusting the pointers as needed.

- ‘round_robin_scheduling” method demonstrates circular traversal for task processing.

In summary, a doubly linked circular list offers a powerful data structure for scenarios
requiring cyclic traversal and efficient insertion/deletion operations. Its suitability for round-
robin scheduling exemplifies its practical application in managing cyclic workloads
effectively.

Question 2: (20 Marks)

What is a Tree? How does it differ from a Binary Tree? Is it possible to convert a Tree to
a Binary Tree? If yes, then, explain the process with an example.

Ans. What is a Tree?

In computer science, a tree is a hierarchical data structure consisting of nodes connected by
edges. It i1s widely used to represent hierarchical relationships, such as organizational
structures, file systems, and more. A tree has the following properties:

1. Root: The topmost node of the tree, from which all other nodes descend.

2. Nodes: Basic elements that store data and may have zero or more children.

3. Edges: Connections between nodes.

Page 5 of 15

4. Parent and Child: Each node, except the root, has exactly one parent and can have zero or
more children.

5. Leaf Nodes: Nodes that do not have any children.

6. Subtree: A tree consisting of a node and its descendants.

Terminology:

- Degree: Number of children a node has.

- Height: Length of the longest path from a node to a leaf.
- Depth: Length of the path from the root to a node.

- Level: Depth of a node plus one.

How Does a Tree Differ from a Binary Tree?

A Binary Tree is a specialized type of tree with the following properties:

1. Binary Tree: Each node in a binary tree can have at most two children, commonly referred
to as the left child and the right child.

2. Binary Search Tree (BST): A binary tree where the left child’s key is less than the parent’s
key, and the right child’s key is greater than the parent’s key.

3. Full Binary Tree: A binary tree where each node has either 0 or 2 children.

4. Complete Binary Tree: A binary tree where all levels are fully filled except possibly the
last level, which is filled from left to right.

Difterences:
1. Number of Children:
- In a general tree, nodes can have more than two children.

- In a binary tree, each node can have at most two children.

2. Structure and Usage:
- General trees are more flexible and can represent a wider range of hierarchical structures.

- Binary trees are more structured and are used in scenarios like binary search, expression
evaluation, and heaps.

Page 6 of 15

Is It Possible to Convert a Tree to a Binary Tree?

Yes, it is possible to convert a general tree to a binary tree. The conversion process typically
involves transforming the general tree into a binary tree while preserving the hierarchical
relationships. This conversion is often achieved using a method called the "left-child, right-
sibling" representation.

Process of Converting a General Tree to a Binary Tree

The "left-child, right-sibling" method is one common approach to convert a general tree into
a binary tree. Here’s how it works:

1. Left Child: For each node in the general tree, the first child (if any) is treated as the left
child in the binary tree.

2. Right Sibling: For each node, the next sibling (if any) is treated as the right child in the
binary tree.

Example:

Consider a general tree with the following structure:

mathematica (P Copy code

Conversion Steps:

1. Transform Each Node:

- Node A: Has children B, C, and D.
- B becomes the left child of A.

Page 7 of 15

- C becomes the right sibling of B.

- D becomes the right sibling of C.
- Node B: Has children E and F.

- E becomes the left child of B.

- F becomes the right sibling of E.
- Node C: Has no children.
- Node D: Has children G and H.

- G becomes the left child of D.

- H becomes the right sibling of G.
2. Construct Binary Tree:
- Start with A as the root.
- Add B as the left child of A, C as the right sibling of B, and D as the right sibling of C.
- Add E as the left child of B, F as the right sibling of E.

- Add G as the left child of D, H as the right sibling of G.

The resulting binary tree will look like this:

(Y Co py code

Detailed Representation:

- Node A: Left child is B, right child is C.
- Node B: Left child is E, right sibling is F.

- Node C: Has no children (empty subtree).
- Node D: Left child is G, right sibling is H.

Benefits of This Approach:

1. Binary Tree Representation: Allows use of binary tree algorithms and data structures to
work with the tree.

2. Preserves Hierarchical Relationships: By converting the general tree to binary form,
hierarchical relationships are preserved in the binary tree format.

Considerations:

- Space Efficiency: In some cases, converting a general tree to a binary tree may not be
space-efficient due to the added right pointers.

- Traversal Complexity: Traversing the binary tree using left-child, right-sibling
representation may be more complex compared to directly working with the general tree.

Applications:

- Hierarchical Data Processing: The binary tree representation can be used in various
algorithms and applications that require hierarchical data processing, such as expression
parsing and sorting.

- Memory Efficient Storage: For some systems, storing hierarchical data in a binary format
can be more memory-efficient compared to other hierarchical representations.

Summary:

A general tree is a versatile data structure that allows nodes to have multiple children,
representing various hierarchical relationships. A binary tree, on the other hand, is a
specialized type of tree where each node has at most two children. Converting a general tree
to a binary tree involves using a left-child, right-sibling approach to map the general tree's
structure into a binary format, preserving the hierarchical relationships. This conversion
facilitates the use of binary tree algorithms and structures, although it may introduce
additional complexity and overhead.

Question 3: (20 Marks)

What are Red Black Trees? How do they differ from Splay Trees? What are their
applications?

Ans. What are Red-Black Trees?

Red-Black Trees are a type of self-balancing binary search tree. They ensure that the tree
remains approximately balanced, which guarantees that basic operations such as insertion,
deletion, and lookup are performed in \(O(\log n) \) time. Red-black trees enforce a set of
rules (properties) to maintain balance and ensure efficient operations.

Properties of Red-Black Trees:

1. Node Color: Each node is either red or black.

2. Root Property: The root node is always black.

3. Leaf Property: All leaves (NIL nodes) are black.

4. Red Property: Red nodes cannot have red children (i.e., no two red nodes can be adjacent).

5. Black Depth Property: Every path from a node to its descendant NIL nodes must have the
same number of black nodes (black depth).

Invariants ensure balance by ensuring that the longest path from the root to a leaf is no more
than twice as long as the shortest path.

Differences Between Red-Black Trees and Splay Trees

Red-Black Trees vs. Splay Trees:

1. Balancing Criteria:

- Red-Black Trees: Use strict balancing rules to ensure the height of the tree is \(O(\log n)
\) at all times, which guarantees worst-case time complexity for operations.

- Splay Trees: Do not maintain strict balance but use an amortized balancing strategy. They
perform operations based on recent access patterns to keep frequently accessed elements near
the root.

2. Operation Guarantees:

- Red-Black Trees: Provide worst-case \(O(\log n) \) time complexity for insertion,
deletion, and lookup operations.

- Splay Trees: Provide amortized \(O(\log n) \) time complexity for these operations, which
means that while individual operations might be slower, the average time per operation is
logarithmic over a sequence of operations.

3. Rebalancing Strategy:

- Red-Black Trees: Use rotations and color changes to maintain balance after insertions and
deletions.

- Splay Trees: Use splaying (a sequence of tree rotations) to move accessed elements to the
root, which can affect the balance but tends to improve access times for recently accessed
elements.

4. Applications:

- Red-Black Trees: Used in applications where consistent and predictable performance is
required, such as in associative containers (e.g., ‘std::map’ in C++), priority queues, and
some system libraries.

- Splay Trees: Useful in scenarios where access patterns are not uniform and some elements
are accessed much more frequently than others, such as in caching systems, memory
management, and dynamic sets.

Applications of Red-Black Trees

1. Associative Containers:

- Example: “std::map’ and “std::set” in C++ standard library, which use red-black trees to
maintain sorted order and allow efficient insertion, deletion, and search operations.

2. Priority Queues:

- Example: Implementations of priority queues or heaps can use red-black trees for efficient
insertion and removal of the highest (or lowest) priority element.

3. Database Indexing:

- Example: Some database systems use red-black trees to index data, allowing efficient
retrieval and updates while maintaining sorted order.

4. File Systems:

- Example: Certain file systems use red-black trees to manage directories and file metadata,
facilitating fast access and modifications.

Applications of Splay Trees

1. Caching:

- Example: In systems where recently accessed data should be quickly accessible, such as in
LRU (Least Recently Used) caching systems, splay trees can efficiently move frequently
accessed items closer to the root.

2. Memory Management:

- Example: Dynamic memory allocators can use splay trees to keep recently freed memory
blocks near the root, improving allocation and deallocation efficiency.

3. Dynamic Set Operations:

- Example: In scenarios where the access pattern is skewed, such as maintaining a dynamic
set of elements where recent accesses are more likely to be repeated, splay trees can adapt to
these access patterns.

4. Implementing Data Structures:

- Example: Splay trees are used in implementing certain data structures like certain types of
dynamic dictionaries, where recent queries are expected to be re-queried.

Summary:

Red-black trees and splay trees are both types of self-balancing binary search trees, but they
differ in their balancing strategies and operational guarantees. Red-black trees maintain a
strict balance to ensure \(O(\log n) \) time complexity for all operations, making them
suitable for applications requiring consistent performance. Splay trees use an amortized
balancing strategy, which can be advantageous in scenarios where recent access patterns
dominate. Each type has its own strengths and is chosen based on the specific requirements of
the application, such as consistent performance or adaptive access patterns.

Question 4: (20 Marks)

Write a short note on the recent developments in the area of finding shortest path
between two nodes of a Graph. Make necessary assumptions.

Ans. Recent Developments in Finding the Shortest Path Between Two Nodes of a Graph

Finding the shortest path between two nodes in a graph is a fundamental problem in computer
science with applications ranging from network routing to geographic mapping. Traditional
algorithms like Dijkstra’s and Bellman-Ford have been widely used, but recent developments
in this area continue to enhance performance, address new challenges, and broaden
application scopes. Here’s a summary of some key recent advancements:

1. Enhanced Versions of Classical Algorithms

1. Dijkstra’s Algorithm with Priority Queue Optimizations:

- Recent Improvement: The introduction of more efficient priority queue implementations,
such as the Fibonacci heap, has improved the performance of Dijkstra’s algorithm, reducing
the time complexity from \(O(V”2)\) with a simple array to \(O(E + V \log V)\) using a
binary heap or \(O(E + \log V)\) with a Fibonacci heap.

- Application: This improvement is particularly useful for large-scale graphs where vertices
and edges are numerous, such as in traffic management systems and large network routing.

2. A (A-Star) Algorithm:

- Recent Development: Advances in heuristic design for the A algorithm have made it more
efficient. For example, adaptive heuristics that change based on the graph’s structure or the
specific problem instance can improve performance.

- Application: Used in navigation systems and game Al, where finding the shortest path
efficiently is crucial.

2. Approximation and Heuristic Algorithms

1. Landmark-Based Shortest Path Algorithms:

- Recent Development: The use of landmarks to precompute distances and speed up queries
has seen significant improvements. Landmark-based approaches like ALT (A with Landmarks
and Triangle Inequality) help in quickly estimating shortest paths.

- Application: Suitable for applications requiring frequent shortest path queries, such as
route planning in geographic information systems (GIS).

2. Contraction Hierarchies:

- Recent Development: Contraction Hierarchies involve preprocessing the graph to create a
hierarchy of nodes, which simplifies shortest path queries. Recent advancements focus on
optimizing the preprocessing time and space requirements.

- Application: Effective for road networks and transportation systems where rapid query
response is essential.

3. Graph-Specific Techniques

1. Dynamic Shortest Path Algorithms:

- Recent Development: Algorithms that handle dynamic graphs, where edges or nodes are
added or removed frequently, have improved efficiency. Techniques like Dynamic Dijkstra
and Dynamic A address these changes without recomputing the entire shortest path.

- Application: Useful in real-time systems such as traffic management, where the graph is
constantly changing.

2. Exact and Approximate Algorithms for Large-Scale Graphs:

- Recent Development: Techniques like Parallel Shortest Path Algorithms and MapReduce-
based approaches have been developed to handle very large graphs effectively. These
methods distribute computation across multiple processors or nodes.

- Application: Critical for big data applications such as social network analysis and large-
scale geographical mapping.

4. Machine Learning and Optimization Techniques

1. Graph Neural Networks (GNN5):

- Recent Development: GNNs have been used to learn and predict shortest paths or
approximate solutions by training on graph data. These methods can generalize well to
different types of graphs and adapt to complex structures.

- Application: Potentially useful in optimizing network routing and infrastructure planning
where traditional methods may be computationally expensive.

2. Metaheuristic Algorithms:

- Recent Development: Algorithms such as Genetic Algorithms and Ant Colony
Optimization have been applied to shortest path problems, providing approximate solutions
with good performance in practice.

- Application: Useful in complex and highly variable environments, such as optimization in
logistics and supply chain management.

Summary

Recent developments in shortest path algorithms have focused on improving efficiency,
handling large and dynamic graphs, and leveraging advanced techniques such as machine
learning and metaheuristics. These advancements are driven by the need for faster
computation in applications ranging from transportation and network routing to real-time
systems and big data analysis. By incorporating enhanced classical algorithms, new
heuristics, and innovative optimization strategies, researchers and practitioners are
continually expanding the capabilities and applications of shortest path algorithms.

