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Course Code : MCS-211 
Course Title : Design and Analysis of Algorithms 
Assignment Number :           MCAOL(I)/211/Assign/2025 
Maximum Marks : 100 
Weightage : 30% 

Last Dates for Submission : 30
th

April 2025 (for January Session) 

31
st October 2025 (for July Session) 

This assignment has four questions (80 Marks). Answer all questions. The remaining 20 marks 
are for viva voce. You may use illustrations and diagrams to enhance the explanations. Please 
go through the guidelines regarding assignments given in the Programme guide for the 
presentation format. 
 
Q1: a) Design and develop an efficient algorithm to find the list of prime numbers in 

the range 501 to 2000. What is the complexity of this algorithm? 
(2 Marks)

 

b) Differentiate between Cubic-time and Factorial-time algorithms. Give example 
of one algorithm each for these two running times. 

(2 Marks)

c) Write an algorithm to multiply two square matrices of order n*n. Also explain 
the time complexity of this algorithm. 

(2 Marks)
 

d) What are asymptotic bounds for analysis of efficiency of algorithms? Why are 
asymptotic bounds used? What are their shortcomings? Explain the Big O and 
Big   notation with the help of a diagram. Find the Big O-notation and Θ-
notation for the function: 

()= 1004 +10003 +100000 

(4 Marks)
 
 
 
 

e) Write and explain the Left to Right binary exponentiation algorithm. 
Demonstrate the use of this algorithm to compute the value of 329 (Show the 
steps of computation). Explain the worst-case complexity of this algorithm. 

(4 Marks)
 
 

f) Write and explain the Bubble sort algorithm. Discuss its best and worst-case 
time complexity. 

(3 Marks)
 

g) What are the uses of recurrence relations? Solve the following recurrence 
relations using the Master’s method 

a.    



   

b.    



   

(3 Marks)
 

Q2: a) What is an Optimisation Problem? Explain with the help of an example. When 
would you use a Greedy Approach to solve optimisation problem? Formulate the 
Task Scheduling Problem as an optimisation problem and write a greedy algorithm 
to solve this problem. Also, solve the following fractional Knapsack problem using 
greedy approach. Show all the steps. 
 

Suppose there is a knapsack of capacity 20 Kg and the following 6 items
are to packed in it. The weight and profit of the items are as under:

(p1, p2,…, p6) = (30,16,18,20,10, 7)
(w1, w2,…, w6) = ( 5, 4, 6, 4, 5, 7)

Select a subset of the items that maximises the profit while keeping the total 
weight below or equal to the given capacity.  

(4 Marks)
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b) Assuming that data to be transmitted consists of only characters ‘a’ to ‘g’, design
the Huffman code for the following frequencies of character data. Show all the
steps of building a huffman tree. Also, show how a coded sequence using Huffman 
code can be decoded. 
               a:5, b:25, c:10, d:15, e:8, f:7, g:30  

(4 Marks)

 
 
 

c) Explain the Merge procedure of the Merge Sort algorithm. Demonstrate the use of
recursive Merge sort algorithm for sorting the following data of size 8: [19, 18, 16, 
12, 11, 10, 9, 8]. Compute the complexity of Merge Sort algorithm. 

 

(4 Marks)
 
 

d) Explain the divide and conquer approach of multiplying two large integers.
Compute the time complexity of this approach. Also, explain the binary search
algorithm and find its time complexity. 

 

(4 Marks)
 

e) Explain the Topological sorting with the help of an example. Also, explain the 
algorithm of finding strongly connected components in a directed Graph. 

 

(4 Marks)

Q3: Consider the following Graph: 
 
 
 
 
 
 
 
 

Figure 1: A sample weighted Graph 
 

a) Write the Prim’s algorithm to find the minimum cost spanning tree of a graph.
Also, find the time complexity of Prim’s algorithm. Demonstrate the use of
Kruskal’s algorithm and Prim’s algorithm to find the minimum cost spanning tree
for the Graph given in Figure 1. Show all the steps. 

 
 
 
 
 
 
 
 
 
 
 
 
 

(4 Marks)
 
 
 
 

b) Write the Dijkstra’s shortest path algorithm. Also, find the time complexity of this 
shortest path algorithm. Find the shortest paths from the vertex ‘A’ using Dijkstra’s
shortest path algorithm for the graph given in Figure 1. Show all the steps of 
computation. 

 

(4 Marks)
 

c) Explain the algorithm to find the optimal Binary Search Tree. Demonstrate this 
algorithm to find the Optimal Binary Search Tree for the following probability data 
(where pi represents the probability that the search will be for the key node ki, 
whereas qi represents that the search is for dummy node di. Make suitable 
assumptions, if any) 
 

i 0 1 2 3 4 
pi  0.10 0.15 0.20 0.10 
qi 0.05 0.10 0.10 0.10 0.10 

 
 

(6 Marks)
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d) Given the following sequence of chain multiplication of the matrices. Find the
optimal way of multiplying these matrices: 

 
Matrix Dimension 

A1  10 × 15 
A2  15 ×  5 
A3  5 × 20 
A4 20 × 10 

 

(2 Marks)

 
 
 
 
 
 
 
 
 

e) Explain the Rabin Karp algorithm for string matching with the help of an example.
Find the time complexity of this algorithm. 

(4 Marks)
 

Q4: a) Explain the term Decision problem with the help of an example. Define the
following problems and identify if they are decision problem or optimisation 
problem? Give reasons in support of your answer. 

(i) Travelling Salesman Problem 
(ii) Graph Colouring Problem 
(iii)  0-1 Knapsack Problem 

 

(4 Marks)
 
 
 
 
 
 

b) What are P and NP class of Problems? Explain each class with the help of at least 
two examples. 

(4 Marks)

c) Define the NP-Hard and NP-Complete problem. How are they different from each 
other. Explain the use of polynomial time reduction with the help of an example. 

 

(4 Marks)
 
 

d) Define the following Problems: 
(i) SAT Problem 
(ii) Clique problem 
(iii) Hamiltonian Cycle Problem 
(iv) Subset Sum Problem 

 

(8 Marks)
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MCS-211 
SOLVED ASSIGNMENT 2024-25 

 

Q.1 - 

(a)-    Design and develop an efficient algorithm to find the list of 

prime numbers in the range 501 to 2000. What is the complexity of 

this algorithm? 
ANS.-   A highly efficient algorithm to find prime numbers in the range 501 to 2000 is the Sieve of Eratosthenes. 

Here’s how it works: 

1. Create a boolean array is_prime of size 2001, initializing all values as true. 

2. Mark is_prime[0] and is_prime[1] as false (0 and 1 are not prime). 

3. Iterate from 2 to sqrt(2000), marking multiples of each prime as false. 

4. Collect numbers in the range 501 to 2000 where is_prime[i] is true. 

Complexity: 

 Time Complexity: O(n log log n) (efficient for large ranges). 

 Space Complexity: O(n) due to the boolean array. 

This method ensures fast computation compared to checking divisibility for each number separately. 

 

(b)-    Differentiate between Cubic-time and Factorial-time 

algorithms. Give example of one algorithm each for these two 

running times. 
ANS.-   Cubic-time algorithms have a time complexity of O(n³), meaning their execution time grows polynomially 

with input size. They are feasible for moderate input sizes. An example is the Floyd-Warshall algorithm for finding 

all-pairs shortest paths in a graph. 
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Factorial-time algorithms have a time complexity of O(n!), meaning execution time grows exponentially, 

making them impractical for large inputs. An example is the Brute-force Traveling Salesman Problem 

(TSP) solver, which checks all possible permutations of cities to find the shortest route. 

 

(c)-    Write an algorithm to multiply two square matrices of order 

n*n. Also explain the time complexity of this algorithm. 
ANS.-   

 

(d)-    

 
ANS.-   Asymptotic Bounds and Their Significance 

Asymptotic bounds are mathematical tools used to analyze the efficiency of algorithms, focusing on how 

their resource usage (time or memory) grows as the input size increases. They provide a high-level 

understanding of an algorithm's performance without getting bogged down in implementation details or 

specific hardware.    

Why Use Asymptotic Bounds? 

 Platform and Implementation Agnostic: Asymptotic analysis abstracts away hardware-specific 

factors, making it easier to compare algorithms across different machines.    
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 Focus on Growth: It highlights the algorithm's behavior for large inputs, which is often more 

critical than its performance on small datasets. 

 Simplified Analysis: Asymptotic bounds simplify complex algorithms by focusing on the dominant 

terms in their resource usage. 

Shortcomings of Asymptotic Bounds: 

 Hidden Constants: 

Asymptotic notation ignores constant factors, which can sometimes be significant in practice.    

 Worst-Case vs. Average-Case: Asymptotic bounds often represent the worst-case scenario, which 

might not reflect the typical behavior of the algorithm. 

 Oversimplification: Asymptotic analysis can oversimplify real-world performance by neglecting 

factors like cache behavior or hardware optimizations.    

Big O (O) and Big Theta (Θ) Notation 

 Big O (O): Represents the upper bound of an algorithm's growth rate. It provides an asymptotic 

guarantee that the resource usage will not exceed a certain function. 

 Big Theta (Θ): Represents both the upper and lower bound of an algorithm's growth rate. It 

indicates that the resource usage grows at the same rate as a particular function.    

Diagram: 

 
diagram showing Big O and Big Theta notation with curves representing different growth rates  

Big O and Big Theta Notation for f(n) = 100  + 1000  + 100000 

 Big O: O( ) (since the term dominates as n grows) 

 Big Theta: Θ( ) (because the  term is the dominant term) 

In summary, asymptotic bounds provide valuable insights into algorithm efficiency but should be used 

with awareness of their limitations. 
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(e)-    

 
ANS.-   

 

 

 

(f)-    Write and explain the Bubble sort algorithm. Discuss its best 

and worst-case time complexity. 
ANS.-   Bubble Sort Algorithm 
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Bubble Sort is a simple sorting algorithm that repeatedly steps through the list, compares adjacent 

elements, and swaps them if they are in the wrong order. This process continues until the list is sorted. 

Algorithm Steps: 

1. Start from the first element. 

2. Compare it with the next element. If they are in the wrong order, swap them. 

3. Move to the next pair and repeat step 2. 

4. Repeat the process for all elements until no swaps are needed. 

 

(g)-    

 
ANS.-   Uses of Recurrence Relations 

Recurrence relations express the runtime of recursive algorithms. They are used to determine the time 

complexity of algorithms by defining the relation between the input size and subproblems. 

Solving with Master’s Method 
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Q.2 -     

(a)-    What is an Optimisation Problem? Explain with the help of an 

example. When would you use a Greedy Approach to solve 

optimisation problem? Formulate the Task Scheduling Problem as 

an optimisation problem and write a greedy algorithm to solve this 

problem. Also, solve the following fractional Knapsack problem 

using greedy approach. Show all the steps. 

       Suppose there is a knapsack of capacity 20 Kg and the following 6 items  

       are to packed in it. The weight and profit of the items are as under: 

 
             Select a subset of the items that maximises the profit while keeping 

the total weight below or equal to the given capacity. 

ANS.-   Optimisation Problem 

An optimisation problem aims to find the best solution from a set of possible solutions, where "best" is 

defined according to a specific objective function. It involves maximizing or minimizing a value (e.g., 

profit, cost, time).    

Example: 

 Knapsack Problem: Given a set of items with weights and values, select a subset of items to fit in 

a knapsack of limited capacity while maximizing the total value.    

Greedy Approach 

The greedy approach makes locally optimal choices at each step, hoping to reach the global optimum. 

It's suitable when:    

 Optimal Substructure: The problem can be broken down into subproblems, and the optimal 

solution to the subproblems contributes to the optimal solution of the overall problem.    
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 Greedy Choice Property: Making the locally optimal choice at each step leads to the globally 

optimal solution.    

Task Scheduling Problem as Optimisation 

Objective: Schedule tasks with deadlines and durations to minimize the total weighted completion time. 

   

Greedy Algorithm: 

1. Sort tasks in ascending order of deadlines. 

2. Schedule tasks in the sorted order. 

Fractional Knapsack Problem 

Objective: Select items to maximize profit while staying within the knapsack's capacity. 

Greedy Algorithm: 

1. Calculate the profit-to-weight ratio for each item. 

2. Sort items in descending order of the ratio. 

3. Add items to the knapsack in the sorted order, taking fractions of items if necessary to fill the 

remaining capacity. 

Example: 

1. Calculate ratios: (30/5, 16/4, 18/6, 20/4, 10/5, 7/7) = (6, 4, 3, 5, 2, 1) 

2. Sort: (30/5, 20/4, 16/4, 18/6, 10/5, 7/7) 

3. Take all of items 1 and 4 (profit 30 + 20 = 50) 

4. Take 1/2 of item 2 (profit 16/2 = 8) 

5. Total profit: 50 + 8 = 58 

 

(b)-    Assuming that data to be transmitted consists of only 

characters ‘a’ to ‘g’, design the Huffman code for the following 

frequencies of character data. Show all the steps of building a 

huffman tree. Also, show how a coded sequence using Huffman 

code can be decoded.  

a:5, b:25, c:10, d:15, e:8, f:7, g:30 
ANS.-   To build the Huffman Tree for the given frequencies: 

1. Sort characters by frequency: 

{a:5, f:7, e:8, c:10, d:15, b:25, g:30} 

2. Combine the two lowest: (a+f) = 12 

{(af):12, e:8, c:10, d:15, b:25, g:30} 

3. Repeat: (e+c) = 18 

{(af):12, (ec):18, d:15, b:25, g:30} 



       8 
 

 

4. (af + d) = 27 

{(afd):27, (ec):18, b:25, g:30} 

5. (ec + b) = 43 

{(afd):27, (ecb):43, g:30} 

6. (afd + g) = 57 

{(ecb):43, (afdg):57} 

7. Final step: (ecb + afdg) = 100 (Root) 

Huffman Codes: 

 g: 0 

 ecb: 10, e: 100, c: 101, b: 11 

 afdg: 11, a: 1100, f: 1101, d: 111 

Decoding Example: 

For 11001110111: 

 1100 → a 

 1101 → f 

 111 → d 

Decoded sequence: "afd". 

 

(c)-    Explain the Merge procedure of the Merge Sort algorithm. 

Demonstrate the use of recursive Merge sort algorithm for sorting 

the following data of size 8: [19, 18, 16, 12, 11, 10, 9, 8]. Compute 

the complexity of Merge Sort algorithm. 
ANS.-   The Merge procedure in Merge Sort combines two sorted subarrays into a single sorted array. It 

compares elements from both subarrays and places the smallest element into the merged array, repeating until all 

elements are merged. 

Recursive Merge Sort on [19, 18, 16, 12, 11, 10, 9, 8] 

1. Divide: [19, 18, 16, 12] and [11, 10, 9, 8] 

2. Further divide until single elements remain. 

3. Merge: 

o Merge [18, 19] → [16, 18, 19] → [12, 16, 18, 19] 

o Merge [10, 11] → [9, 10, 11] → [8, 9, 10, 11] 

o Merge both halves: [8, 9, 10, 11, 12, 16, 18, 19] 

Complexity: 

 Best, Worst, Average: O(n log n) 
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(d)-    Explain the divide and conquer approach of multiplying two 

large integers. Compute the time complexity of this approach. Also, 

explain the binary search algorithm and find its time complexity. 
ANS.-   

 

(e)-    Explain the Topological sorting with the help of an example. 

Also, explain the algorithm of finding strongly connected 

components in a directed Graph. 
ANS.-   

 
Finding Strongly Connected Components (SCCs) 

An SCC is a maximal subgraph where every vertex is reachable from every other vertex. 

Kosaraju’s Algorithm: 

1. Perform DFS to get the finish order of nodes. 

2. Reverse all edges of the graph. 

3. Perform DFS on the reversed graph, processing nodes in decreasing finish order to identify SCCs. 

 

Q.3 -    Consider the following Graph: 
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Figure 1: A sample weighted Graph 

(a)-    Write the Prim’s algorithm to find the minimum cost spanning 

tree of a graph. Also, find the time complexity of Prim’s algorithm. 

Demonstrate the use of Kruskal’s algorithm and Prim’s algorithm to 

find the minimum cost spanning tree for the Graph given in Figure 1. 

Show all the steps. 
ANS.-   Prim’s Algorithm for Minimum Spanning Tree (MST) 

Prim’s algorithm starts with an arbitrary node and grows the MST by adding the smallest edge 

connecting a visited node to an unvisited node. 

Steps for the given graph: 

1. Start from A, pick the minimum edge A–B (10). 

2. Pick the smallest edge from visited nodes: B–D (4). 

3. Next, choose D–F (7). 

4. Select F–G (5). 

5. Pick D–C (8). 

6. Finally, add F–E (6). 

Total MST cost = 40. 

Time Complexity: With a priority queue, Prim’s algorithm runs in O(E log V). 

Kruskal’s Algorithm 

Sort edges, then add the smallest edge without forming a cycle: 

1. B–D (4), F–G (5), F–E (6), D–F (7), D–C (8), A–B (10) → MST Cost = 40. 

Both methods yield the same MST cost. 

 

(b)-    Write the Dijkstra’s shortest path algorithm. Also, find the 

time complexity of this shortest path algorithm. Find the shortest 
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paths from the vertex ‘A’ using Dijkstra’s shortest path algorithm for 

the graph given in Figure 1. Show all the steps of computation. 
ANS.-   Dijkstra’s Shortest Path Algorithm 

Dijkstra’s algorithm finds the shortest path from a source vertex to all other vertices in a weighted graph 

with non-negative weights. 

Algorithm: 
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(c)-    

 
ANS.-   The Optimal Binary Search Tree (OBST) minimizes the expected search cost based on given probabilities. 

The Dynamic Programming approach is used to construct it. 

Algorithm 

 
Using the given data, construct the table and derive the optimal tree structure. 
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(d)-    

 
ANS.-   The Matrix Chain Multiplication problem minimizes the number of scalar multiplications 

needed to compute the product of matrices. The Dynamic Programming approach is used to solve it 

efficiently. 

 

(e)-    Explain the Rabin Karp algorithm for string matching with the 

help of an example. Find the time complexity of this algorithm. 
ANS.-   Rabin-Karp Algorithm for String Matching 

The Rabin-Karp algorithm is a hashing-based approach used for pattern matching in a given text. It 

works by computing a hash value for the pattern and comparing it with hash values of substrings in the 

text. If a match is found, a character-by-character comparison is performed to confirm the match. 

Algorithm Steps 

1. Compute the hash value of the pattern (P) and the first substring of text (T) of the same length. 
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2. Slide the pattern over the text one character at a time and update the hash using a rolling hash 

function. 

3. If the hash values match, perform a character-by-character comparison to avoid hash collisions. 

Example 

Pattern: "abc", Text: "abdababc" 

 Compute hash for "abc", check against substrings like "abd", "bda", etc. 

 

Q.4 -     

(a)-    Explain the term Decision problem with the help of an 

example. Define the following problems and identify if they are 

decision problem or optimisation problem? Give reasons in support 

of your answer. 

(i) Travelling Salesman Problem 

(ii) Graph Colouring Problem 

(iii) 0-1 Knapsack Problem 
ANS.-   A decision problem is a problem with a yes/no answer. It involves determining whether a solution exists 

that satisfies given constraints. 

Example: The Hamiltonian Cycle Problem asks if a given graph contains a cycle that visits every vertex 

exactly once. The answer is either "Yes" or "No," making it a decision problem. 

Problem Classification: 

(i) Travelling Salesman Problem (TSP) – Optimisation Problem 

 It seeks the shortest possible route visiting all cities and returning to the start. Since it requires 

finding the best solution, it is an optimisation problem. 

(ii) Graph Colouring Problem – Decision Problem 

 Given a graph and a number kkk, it asks whether the graph can be colored using at most kkk 

colors so that no adjacent vertices share the same color. This requires a yes/no answer. 

(iii) 0-1 Knapsack Problem – Optimisation Problem 

 It aims to maximize the total value of selected items while staying within weight constraints, 

making it an optimisation problem. 
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(b)-    What are P and NP class of Problems? Explain each class with 

the help of at least two examples. 
ANS.-   In computational complexity theory, P and NP are classes of decision problems that describe their 

solvability and efficiency. 

 P (Polynomial Time): Problems in P can be solved efficiently by a deterministic Turing machine in 

polynomial time. These problems have algorithms that run in O(n^k) time for some constant k. 

Examples: 

1. Sorting (Merge Sort, Quick Sort) – Runs in O(n log n) time. 

2. Finding the Shortest Path (Dijkstra’s Algorithm) – Solves in O(V²) or better. 

 NP (Nondeterministic Polynomial Time): Problems in NP have solutions that can be verified in 

polynomial time but may not have known polynomial-time algorithms for solving them. 

Examples: 

1. Traveling Salesman Problem (TSP) – Checking a given path is easy, but finding the 

shortest one is hard. 

2. Boolean Satisfiability (SAT) – Verifying a satisfying assignment is quick, but finding one is 

difficult. 

 

(c)-    Define the NP-Hard and NP-Complete problem. How are they 

different from each other. Explain the use of polynomial time 

reduction with the help of an example. 
ANS.-   An NP-Hard problem is at least as hard as the hardest problems in NP (Nondeterministic Polynomial 

time) but may not be in NP itself. It does not necessarily have a solution that can be verified in polynomial time. 

An NP-Complete problem is both in NP and NP-Hard, meaning: 

1. It belongs to NP (its solution can be verified in polynomial time). 

2. Any NP problem can be reduced to it in polynomial time. 

Difference: Every NP-Complete problem is NP-Hard, but not all NP-Hard problems are NP-Complete (e.g., 

optimization problems like the Halting Problem). 

Polynomial Time Reduction Example: 

Consider 3-SAT → Clique Problem. If we can transform any 3-SAT instance into an equivalent Clique 

problem instance in polynomial time, solving the Clique problem would also solve 3-SAT efficiently. This 

helps in proving NP-completeness. 

 

(d)-    Define the following Problems: 

(i) SAT Problem 
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ANS.-   The SAT (Boolean Satisfiability) problem is a fundamental decision problem in computer science 

and logic. It asks whether there exists an assignment of truth values (true/false) to a set of Boolean 

variables such that a given Boolean formula evaluates to true. The formula is usually expressed in 

conjunctive normal form (CNF), meaning it consists of multiple clauses joined by ANDs, with literals in 

each clause connected by ORs. SAT was the first problem proven to be NP-complete, meaning that if an 

efficient algorithm exists for solving SAT, it could solve all problems in NP efficiently. 

 (ii) Clique problem 
ANS.-   The Clique problem is a well-known problem in graph theory. A clique in a graph is a subset of 

vertices such that every two vertices in the subset are connected by an edge. The decision version of the 

problem asks whether a graph contains a clique of at least a given size kkk. The problem is NP-complete, 

meaning no polynomial-time solution is known. The optimization version involves finding the largest 

possible clique in a graph, which is NP-hard. 

 (iii)Hamiltonian Cycle Problem 
ANS.-   A Hamiltonian cycle in a graph is a cycle that visits each vertex exactly once and returns to the 

starting vertex. The Hamiltonian Cycle Problem asks whether such a cycle exists in a given graph. This 

problem is NP-complete, making it computationally difficult to solve for large graphs. It has applications 

in routing, scheduling, and network topology. 

 (iv) Subset Sum Problem 
ANS.-   The Subset Sum Problem asks whether a subset of a given set of integers exists such that the 

sum of the subset equals a specific target value. It is a fundamental NP-complete problem, commonly 

used in cryptography and combinatorial optimization. The problem can be solved in exponential time 

using brute force or more efficiently with dynamic programming for small inputs. 


